Streamlining the licensing of Small Modular Reactors, WNA Webinar

 

WNA webinar

I watched the World Nuclear Association webinar about streamlining the licensing of Small Modular Reactors on July 28th. This was an interesting event with some good speakers. It is currently available on-line here.

The grumble behind the event is that, while companies want to sell their reactors around the world the pesky regulators in each country they want to build in want their say on the suitability of the design and this is tiresome, time consuming, expensive and may lead to country-specific design changes. The speakers made a good case that their jobs would be easier and that SMRs could start generating energy sooner if the regulatory barriers were at least lowered. We were also told that this is important for decarbonising the world energy market which is a relatively new way the SMR companies are trying to lean on Governments.

The audience was challenged by Tom Bergman, Vice President of Regulatory Affairs, NuScale (a leading SMR design/build Company from the USA) with the question “Do you believe that a design approved in the USA is not fit for somewhere else?”. Maybe we could ask him if he would be happy for a British designed reactor, approved by the British regulators and built in Britain to be operated in his backyard without US inspection of the safety case, design, build and operation? We also heard from Sol Pedre, Manager of CAREM project, the National Atomic Energy Commission, Argentina (CAREM is a simplified PWR being built in Buenos Aires province) who, rather naively in my opinion, thought that if they could build and operate a reactor in Argentina then that should go a long way to convincing other regulators that the design is safe enough for worldwide deployment.

Nadezhda Salnikova, Head of Business Development Department of Afrikantov OKBM, JSC, ROSATOM (this is the company that designs and builds Russia’s nuclear propulsion projects such as submarines, icebreakers and floating nuclear power plant) commented that they produce plant for use within Russia under Russian regulatory supervision but the floating power stations can go anywhere. A lack of global licensing means extra work for the Company and work for the local regulators that may be beyond their capabilities.

It was suggested that new nuclear nations could simply accept the regulatory approval of the country selling the reactor. I suspect that this runs counter to IAEA expectations but might be acceptable if a floating plant was to be temporarily positioned following some crisis and operated by experienced staff. This is little different to a nuclear-powered submarine or ice breaker visiting a foreign port.

I have some sympathy for the potential loss of design stability caused by local requirements. This potentially makes the design chain and build more complex but we are talking about an industry that, according to the IAEA had more than 70 SMR designs running in 2020  (Ref. here) while NuScale have designed 50, 60 and 77 MWe versions of their reactor before building any. Design updates do not seem to be a particular problem. Meanwhile modern flexible manufacturing systems should enable slightly different builds to be accommodated on the production lines without reducing shareholder value too far.

The problem with attempts to produce global standards is that most countries agree with the concept providing that the world adopts their existing standards (hence my question to Tom Bergman above).

This event did not really explore the barriers to closer working of the regulators across the world and the advantages that might accrue from converging regulation. I would be interested to see a  comparison of the regulators. What do they do in a similar fashion? what do they do differently? How much scope do their national laws and guidance give them to meet in the middle? Why would they want to do this? How much of the licensing effort is based on design and how much on siting, building and operating? Knowing this, we might then be in a better position to move partial streamlining of international licensing from an aspiration to a realistic target. (This information may be available in the WNA report “Design Maturity and Regulatory Expectations for Small Modular Reactors” which I haven’t yet read in full).

Small Modular Reactors are often based on evolutions of proven technology with enhanced levels of safety built in. Much of the additional safety comes from the small size and layout of the plant greatly reducing vulnerable pipework and reducing dependency on active systems for layers of safety. They have reduced the number of systems (valves, pumps, filters, tanks, chemicals, switches etc) that need to be considered. It seems logical to assume that their safety cases are simpler and fewer systems means fewer things to understand and approve. Design approval should be quicker.

Importantly the construction takes place in factories, possibly in a foreign country. What expectations will the regulator have for quality control and will they require to inspect the reactor during build?

If governments wish to see SMRs contributing to low carbon electricity, district heating, process heating and hydrogen production in the not-too-distant future then they do need to encourage regulators to do their bit to hasten the process without compromising safety. Generic Design Assessment (GDA), which takes about 4 years and is not mandatory, is far from the only issue. They also need to consider how the licensing of sites and operators will be undertaken if the market penetration talked about comes to pass.

What will the siting requirements be? Currently the UK process spends a lot of time and effort considering if a particular site is suitable for a reactor. That may be acceptable if you are only going to build one or two sites a decade but we cannot expect, for example, a foundry to spend years of effort to get permission to use a small (or even micro) reactor to melt metal. What siting processes do we need if, for example, six reactors are going to built and deployed each year?

In the UK the ONR has recently announced new guidance for parties requesting Generic Design Assessment of SMRs and AMRs (Advanced Modular Reactors). It would have been interesting to hear a discussion of this guidance, and the strategy behind it, to see if it goes someway to meeting the aspirations of the reactor manufacturers.

The UK 10 point plan calls for demonstrator SMR and AMR deployment in the early 2030s. But what is the strategy to deploy them, including siting them, in the following years?

I started listening to this webinar thinking about the issue of using one design of reactor in several different countries but ended up thinking that a more difficult issue (in the UK) may be that of gaining public and regulator acceptance of many more nuclear reactors doing a wider range of jobs requiring them to leave their large, well-protected sites, in the countryside with their hundreds of well qualified workers and instead sit in one corner of an industrial site or in the outskirts of a town and with a much smaller staff. This is  a national, rather than an international, issue.

I’m grateful to the WNA for organising this webinar and for the speakers who gave their time. It is an interesting topic and was well presented. A good case was made that life for a reactor vendor would be easier if some of the regulatory barriers were streamlined. It was not made obvious that this was likely or even possible. The question in the webinar title was not answered.

 

 

 

NEI Small and Advanced Reactors: Virtual Event 18/2/21

This was an on-line event organised by Nuclear Engineering International bringing together a collection of speakers to provide updates on the development of, and potential for, small and advanced reactors.

The website opened with a picture of a conference centre with signs to various “places” which you could enter with a click. Entering the auditorium showed a timetable for the conference and allowed the user to listen to the current talk. After the event all presentations were available to listen to again. The Exhibition Hall allowed you to read or download publicity material and watch promo videos from a number of developers of SMRs. The Networking Lounge allowed you to read and join a number of text threads with representatives of the Companies involved.

This was a brave, and very welcome attempt, to recreate the functionality of a conference. It couldn’t provide the impromptu chats in the queue for a cup of tea, which are a vital part of conferences in the real world, nor recreate the sensation of sitting in an uncomfortable chair wishing the tea break was nearer while trying to concentrate on a talk. I admit to doing other things, such as catching up on shredding old documents, while listening to talks.

We live in an interesting time where there are limited funds for investment, a growing need for energy, a growing urgency to be more careful with the planet we call home and a lack of consensus on the way forward. Candidate solutions for the future include greater energy efficiency, reduced per-capita consumption, renewable energy solutions with solar and wind being the main growth areas, and more nuclear power. Within nuclear power there is competition between ever larger and more complex reactor systems, large but “simplified” reactors, and smaller reactor systems.

This conference was about the small reactors, seen by many as the solution to the “too big” problem with full sized reactor systems. One stated advantage are that smaller cores make less demand on the engineering of large pressure vessels and containment buildings. The control and safety systems can be bought closer, even into the pressure vessel, and a greater reliance can be put on passive accident management systems. But the unique selling point is the contention that these reactors can be produced, either as a number of modules or complete, in factories, shipped to site by road, plugged in and they are off. This considerably reduces the construction risks and build time resulting in a quicker achievement of a positive cash flow. The reactors are less powerful but it is easy to line up multiple reactors to give higher outputs while the smaller output makes them suitable in areas that cannot be served by 1000+ MW units.

It was explained that the UK SMR reuses existing design and technology but the innovation is chiefly working out how to factory build it. The system is “low cost, deliverable and investable” with 80% of UK content. The next step, which starts this year, is GDA. This is important for the UK context but is also a badge of honour around the world. The ambitious plan for acceleration includes parallel identification and development of the site and the placing orders before the GDA is complete. It is suggested that they might fit well on NDA sites which have a nuclear history but are not big enough for gigawatt plant such as Trawsfynydd. After the first of kind a factory might be expected to produce two systems a year. If orders were to be higher then further factories could be built. In this manner the 5th unit should be 20 – 30% cheaper than first, down to about £50 kW.

Funding is in place for the GDA phase but not beyond. The company is lobbying for the UK policy situation to develop and sites to be identified. The company is confident that once production is underway then debt and equity vehicles will be sufficient to move them forward but government bridging funds may be needed to get there.

This was an upbeat talk but the reality is that they are playing in a crowded field and the UK has a poor record of being able to deliver fleet savings in nuclear build (except maybe in the nuclear submarine world where the figures are less well publicised) and has, for years, lacked a suitably forward looking and coherent energy policy. They are also competing with Russians and Canadians with a more obvious local market and a clearer path to that market and the Chinese with their very large investments in a range of nuclear technology. Too much depends on the UK government.

The IAEA has set up an International Technical Working Group on Small and Medium-Sized or Modular Reactors (SMR) with a number of sub-groups enabling international collaboration in the development of SMR and their applications. They have produced a booklet reviewing 72 designs, developed technology roadmaps for SMR deployment, generic user’s requirements and criteria and a tool for the economic appraisal. Interestingly (for me anyway) they have a project running looking at the emergency planning requirements for SMRs due to report in December of this year. (See IAEA material at https://www.iaea.org/topics/small-modular-reactors). The fact that there are 72 designs on offer shows up a problem. It is relatively cheap and sexy to design a reactor system and many organisations do this hoping to get a slice of future markets. Most fall out of the race and represent a waste of effort.

Rosatom claim to have “SMR solutions in Russia and for the global market”. They are developing and building small reactors for icebreakers, for floating power plant and for land based systems. Floating power plant are expected to be used in the North, replacing diesel, coal and old nuclear generators and providing heat and electricity. Because they are built in a shipyard they need very little local building and are floated away at end of life rather than decommissioned in-situ. They can also be repositioned mid-life if required. Their newer reactor designs are more compact.

By using these reactors in icebreakers (4 vessels each with 2 reactors) they have already achieved significant fleet savings (that pun was not intended). They also have identified markets, home and foreign, for the floating and land-based variants.

It appears that Russia has a very credible SMR programme with proven designs and proven markets.

We were told about “The Progress of HTR-PM in China”. This is a high temperature gas cooled reactor with ceramic coated fuel (TRISO particles, pebble bed format) and helium coolant. The programme has a long history including the reactors HTR-10 & HTR-PM and extensive engineering laboratory work. Almost all of the components are built in China. Unusually they have two reactors in parallel providing steam to a single turbine. Each reactor can provide 250 MW.th and 210 MW.e with cores 3m diameter x 11m high. Inlet 250 oC out 750 oC producing superheated steam. HTR-PM is currently in hot-testing with first criticality expected this year.

They now have proven technology and have plans to move forward. HTR-PM600 (650MW) will have six reactors feeding one turbine.  These will be used for co-generation and to repower coal power stations. An aspiration is to go to higher temperatures for hydrogen production.

Some ideas on financing SMRs and Advanced Reactors were presented. The poor track record of on-time completion, very high capital requirements and long times before return have given the industry a bad name and mean that nuclear is often a “bet-the-company” investment. Contract for difference and Regulated Asset Base are two attempts to manage the high cost of money in big build public interest projects.

It was suggested that SMRs significantly reduce all of the finance and risk problems of big-nuclear. They should be able to complete on programme, capital demands are lower, lead times are shorter, costs of delays are less and costs are such that they are not bet-the-company investments. Therefore they can be treated as conventional assets.

SMRs are like aircraft in many respects. Both are built in factories, safety critical, and highly regulated and are deployed as a fleet.  Interestingly it was claimed that an SMR requires a similar investment as an Airbus A-380 [I tried to verify this and found getting the numbers quite difficult but seems to be in the right ball park. The clearest cost estimate I found was a 12 unit NuScale (924 MWe) estimated to cost $2,850 per kWe giving costs of $2,633 Million (NuScale brochure) compared to $428 Million for an Airbus A380 (one unit not 12) https://247wallst.com/aerospace-defense/2015/12/26/how-much-does-an-airbus-a380-cost/ ).  As for large aircraft it is conceivable that SMRs could be sold on a Sale and Leaseback in which the lessee pays purchase price in instalments over a set period of time before becoming owners. The payments are treated as expenses rather than capital investment and the utility doesn’t have the liability for the plant on its books. An alternative is an operating lease in which the Lessor pays only rent and not pay-down of the capital costs, making it more affordable and viable in areas that could not afford nuclear power under current arrangements. It is hard to see a factory owner or a community buying one of these for cash to provide their energy needs over the next 20 years but they might lease one if it gives them reliable low-cost energy. It is noted that if the SMR is mobile (for example floating) it can be moved mid-life and follow the money.

There were a series of shorter presentations within chaired panel discussions. These provided a number of viewpoints.

Micro-reactors (up to about 10 MWe) are in various stages of development and licensing with some hoping to be building first of a kind systems in the next few years. Russia and China are further along the development line.

They use a range of technologies; some use components from existing larger reactors or the aviation industry, some use more novel components such as heat tubes to remove the heat. All of these reactors are designed to be accident tolerant, they can be used to produce heat or electricity and some are combined with molten salt energy stores to balance supply and demand.

It was claimed that the NuScale Advanced Small Reactor with 12 (or 4 or 6) 77 MWe units would have a site fence emergency planning zone (I’ll wait to see the ONR judgement on that!) and no radioactive release in normal operation, events or decommissioning.

A joint study which shows small nuclear being cost-competitive was cited (https://www.oecd-nea.org/jcms/pl_51110/projected-costs-of-generating-electricity-2020-edition?details=true). A representative of the WNA put forward the view that the world should concentrate its efforts into a smaller number of design concepts (I agree) and that international harmonisation of reactor design approval was required (not very likely in my opinion).

All of the speakers agreed that the demand for electricity will rise, outstripping the capacity of renewables, as it is increasingly used for transport and domestic heating while the burning of hydrocarbons becomes less acceptable. (Estonia has an additional issue in that its grid connections to Russia are expected to be cut in 2025 and they want to move away from dirty shale gas that they currently burn).

The initial target market is remote communities with a need for district heating and electricity although industrial uses, mining, disaster response, hospitals, campuses, military bases, data centres, desalination, and hydrogen production were all mentioned as potential users.

A question about competition from solar power/wind power and batteries was dodged. But a later speaker stated that small grids with wind and solar would benefit from a nuclear component providing reliable generation and also the “spinning metal” required to control frequency and voltage and also reported an ability to black start (without grid supplies) some micro-reactors.

Interestingly all speakers were more fluent when discussing the potential market than when discussing operators. If these reactors are to penetrate markets as single, remote units it will not on sites with 500+ nuclear skilled employees. Getting licensed to operate them will have to be no more difficult than getting licences to run industrial process plant or they will run into difficulty. Will the regulators accept local “semi-skilled” operators with remote technical support?

Canada’s action plan for SMR was the subject of a panel discussion. It introduced the Candu Users Group (COG) and its Small and Modular Reactor Group. Canada has a proud history in nuclear technology and now has a large industry of strategic importance. The action plan (www.Smrroadmap.ca) has 53 recommendations which have translated to 497 actions. This is a broad coalition of 210 partners.

The Canadians have identified three streams of effort; fast development of SMRs with the potential to replace coal generation (a requirement of Canada’s environmental policy), the development of advanced reactors for a variety of purposes including use of used fuel, and the development of very small SMRs (vSMR) to replace diesel in off-grid situations (remote communities and industrial sites).

The Canadian Nuclear Safety Commission is readying itself for the SMR programme with recruitment, a regulatory framework and reports on the potential issues. Their aim is to ensure safety and social acceptance without putting barriers in the path of progress.

The coherence and comprehensiveness of the Canadian plan is impressive. If only the UK could do something along the same lines.

This was an interesting day and provided ample evidence that there is a market position for small and micro reactors, with small reactors feeding national grids, process heat and hydrogen production and micro reactors providing power to remote communities and industries. There seem to be no insurmountable technology issues. The issues will be development finance and public acceptability and then the costs of ownership. Canada and Russia have advantages from obvious domestic markets at the high cost end. China has the advantage of a diverse nuclear industry and seemingly no limit to development funds. The UK obviously has the technical ability in this area with its commercial nuclear industry and nuclear powered submarine programme but it lacks the niche markets, clear funding and national strategy. There will be more in the market for multiple players. The UK will have to work hard to get a slice of that market.

The remote conference was not without technical issues and the posing of questions by text during the talk couldn’t replicate post-talk discussions. But the presentations and Q&As were available to review after the event.

I am grateful to Nuclear Engineering International for organising this event and to the speakers for their efforts. Next time I’d prefer to attend in person but this was a very welcome interlude in a lockdown.

Keith Pearce, Feb 2021

 

 

 

 

 

 

 

Brexit, Energy Security and the Nuclear Industry

An interesting paper has been issued by the House of Lords, European Union Committee (10th Report of Session 2017–19, HL Paper 63, Brexit: Energy Security). This looks at the potential impact of the UK leaving the EU on the supply of electricity and gas. It finds that we may lose some of the market efficiencies we enjoy as a member and may have to make political concessions to retain some benefits, may have a accept higher prices for using interconnectors, and may be in a poorer position in the event of a continent-wide energy shortage.

There is a big uncertainty about the influence the UK will have on European energy policy when outside the EU and further debate about how, if at all, this will affect us. This theme was summarised by the statement that “Brexit can have severe long term implications for UK’s energy security if economically rational outcomes are not sought by both sides”.

From the point of view of trading electricity the EU does not seem to be a very good option for a trading partner. The report looks at the experiences of Norway and Switzerland. The EU seems to want to impose its own rules, not just the current rules but all future ones. To use the Norway model would be to lack any say in the rule making but to be a member of the EFTA, which the UK has rejected. Switzerland sits at the centre of Europe and has 40 interconnectors between it and the EU. Despite this it does not have the ease of trading electricity with the EU. Meanwhile, we are told that, “a study requested by the European Parliament’s Committee on Industry, Research and Energy concluded: “With or without the UK, the EU will be able to complete its market, to achieve its climate and energy targets with feasible readjustments, and to maintain supply security.”

On the energy security front, the committee worried that we would cease to benefit from “EU solidarity” so, if energy was in short supply the EU members would be more likely to share what was available between themselves rather than allow it across interconnectors to the UK. The report concluded that: “Post-Brexit, the UK may be more vulnerable to supply shortages in the event of extreme weather or unplanned generation outages. While we note the Minister’s confidence in future UK energy security, we urge the Government to set out the means by which it will work with the EU to anticipate and manage cross-continent supply shortages that will affect the UK”.

There is an important section on Euratom. It is stated that: “not only do nuclear power stations supply a significant amount of low-carbon electricity [20%], but the continuity of that supply helps balance less predictable renewable sources, providing further assistance to the UK in meeting its decarbonisation objectives”. I’m not sure that this is entirely true if you take it to mean that a nuclear reactor will immediately take up the load if the wind drops. Nuclear energy provides “baseload” supply. Nuclear power stations work best when providing a constant level of output – load following is possible but is not one of their strengths. What really balances the unpredictable renewable sources are the rapidly variable generators such as hydro, gas turbines and diesel units. Not all of these score highly on the decarbonisation test.

It seems widely agreed that leaving Euratom will have no effect on nuclear safety – that is covered by UK regulation and the ONR. However, without replacement of the controls on the import and export of nuclear material, including fuel, and the free movement of skilled workers becomes more difficult. Without at least some of the Nuclear Co-operation Agreements held by Euratom being replicated trade becomes harder.

ONR have been given the task of Safeguarding but have stated that “Establishing a system that seeks to replicate all aspects of the current Euratom regime by March 2019 is unlikely to be achievable. A system that seeks to meet our international reporting obligations, and which can then be further developed over time is a more realistic starting point and is what we are aiming to achieve by March 2019

In summary. We are leaving a club that distinguishes between “them” and “us” and we don’t know how much difference being a “them” rather than an “us” will make to our relationship with the EU or its member states. The European energy markets are not necessarily going to be open to us in the transparent way they are now. This means that the price of energy flowing between the UK and EU becomes a political question as well as a market question. The market becomes less efficient. Our place in the queue when the whole of Europe is lacking energy also changes for the worst.

Britain should have an energy policy that ensure that our lights stay on. The role of the EU member nations in that policy must not be taken for granted.

Costs of decommissioning UK nuclear industry

cost of decommissioining

The NDA have issued a statement on the estimated costs of decommissioning the parts of the UK nuclear industry that they are responsible for (here).

It shows total costs in the range £97 billion – £222 billion with a best estimate of £119 billion over 120 years. Discounted cost is put at £164 billion which is higher than the unadjusted cost because the NDA now use negative discounting rates as explaining in the supporting document from the Treasury (here) but more clearly in an Annex to the Annual Report (here).

The current value of £164 billion compares to £160.6 billion a year ago. This includes £1.3 billion being added to the estimated cost of completing the job. Inflation and changes to the discount rates being applied explains the rest of the increase.

So despite £3.243 billion being spent and an Annual Report talking of good progress the estimated cost to completion is more than it was at the start of the reporting period.

The Annual Report admits that £100 million was spent in compensation following the flawed contest for the Magnox contract.

 

 

A Korean APR 1400 for Moorside?

It looks possible that the Korean company TEPCO will take a major stake in the Moorside project. This may involve junking the design and regulatory  work already done on the UK AP1000 (Ref ONR Website) applying to build their own APR 1400 design. That may cause delays but they have a good record of building reactors.

Kepco was formed in 1951, has the brand statement “power with heart” and describes its main business as “Electric power, heat supply, telecommunications and gas supply” (Ref KEPCO website). According to Wikipedia it is just over 50% state owned.

Early news of TEPCO’s interest in Moorside was published in the Guardian in February 2017 (Ref)  More recent news is reported in the FT in July 2017 (Ref). New investment is thought necessary as Toshiba is struggling to survive (Ref).

Korea has a very credible history in the nuclear industry (Ref). The APR1400 being built at Barakah in Abu Dhabi is reported to be 95% complete and receiving nuclear fuel (Ref). But the news that Korea is withdrawing from nuclear power at home (Ref) is a cause for concern.

A one page overview of the APR 1400 reactor can be found at Ref  and a more detailed one at Ref. (See also Ref for a description of the APR+).

The first of these reactors, Shin Kori Unit 3, entered service in December 2016. Reports suggest that 7 further units are under construction and 4 more planned (Ref)) although the recent announcement of a plan to wind down domestic nuclear power (Ref) may have an impact on that programme.

The APR1400 is a 1450 MWe evolutionary PWR based on the Korean Standard Nuclear Power Plant (KSNP) aspiring to provide both enhanced safety and economic competitiveness.

As shown in the circuit diagram below the reactor design has two steam generators but, unusually each of these has two reactor coolant pumps each feeding into a separate cold leg. The pressuriser, attached to one hot leg, and the steam generators are increased in size compared to previous models and the reactor outlet temperature has been dropped to cope better with transients.

From IAEA-CN-164-3S09

Leak before break technology has permitted the pipe restraint system to the simplified.

The Safety Injection System consists of four trains each with a safety injection tank and a safety injection pump. This system provides high pressure, low pressure and recirculation in one system. It injects directly into the Reactor Pressure Vessel to eliminate the potential for leakage from a damaged cold leg. The safety injection pumps are physically separated from each other reducing the probability of common mode failure in fires, sabotage or floods.

A steel lined, post tensioned concrete structure with a reinforced concrete internal layer provides containment, biological shielding and protection from external hazards. It contains the reactor, the reactor cooling circuits, the steam generators and the In-Containment Refuelling Water Storage Plant. The latter is a key safety feature providing cooling water in fault conditions and a large heat sink.

Interestingly the reactor is designed to be able to manage daily load following based on the Korean experience of demand of 100% output for 16 hours a day and 50% output for 4 hours a day with 2 hour power-ramps.